Package: MBMethPred 0.1.4.2

MBMethPred: Medulloblastoma Subgroups Prediction

Utilizing a combination of machine learning models (Random Forest, Naive Bayes, K-Nearest Neighbor, Support Vector Machines, Extreme Gradient Boosting, and Linear Discriminant Analysis) and a deep Artificial Neural Network model, 'MBMethPred' can predict medulloblastoma subgroups, including wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4 from DNA methylation beta values. See Sharif Rahmani E, Lawarde A, Lingasamy P, Moreno SV, Salumets A and Modhukur V (2023), MBMethPred: a computational framework for the accurate classification of childhood medulloblastoma subgroups using data integration and AI-based approaches. Front. Genet. 14:1233657. <doi:10.3389/fgene.2023.1233657> for more details.

Authors:Edris Sharif Rahmani [aut, ctb, cre], Ankita Sunil Lawarde [aut, ctb], Vijayachitra Modhukur [aut, ctb]

MBMethPred_0.1.4.2.tar.gz
MBMethPred_0.1.4.2.zip(r-4.5)MBMethPred_0.1.4.2.zip(r-4.4)MBMethPred_0.1.4.2.zip(r-4.3)
MBMethPred_0.1.4.2.tgz(r-4.4-any)MBMethPred_0.1.4.2.tgz(r-4.3-any)
MBMethPred_0.1.4.2.tar.gz(r-4.5-noble)MBMethPred_0.1.4.2.tar.gz(r-4.4-noble)
MBMethPred_0.1.4.2.tgz(r-4.4-emscripten)MBMethPred_0.1.4.2.tgz(r-4.3-emscripten)
MBMethPred.pdf |MBMethPred.html
MBMethPred/json (API)

# Install 'MBMethPred' in R:
install.packages('MBMethPred', repos = c('https://sharifrahmanie.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sharifrahmanie/mbmethpred/issues

Datasets:

On CRAN:

3.70 score 1 scripts 255 downloads 15 exports 131 dependencies

Last updated 1 years agofrom:de3ad612cc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:BoxPlotConfusionMatrixKNearestNeighborModelLinearDiscriminantAnalysisModelModelMetricsNaiveBayesModelNeuralNetworkModelNewDataPredictionResultRandomForestModelReadMethylFileReadSNFDataSimilarityNetworkFusionSupportVectorMachineModelTSNEPlotXGBoostModel

Dependencies:alluvialbackportsbase64encbitbit64bitopsbslibcachemcaretcaToolsclassclicliprclockcodetoolscolorspaceconfigcpp11crayondata.tablediagramdigestdplyre1071evaluateExPositionfansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatherehighrhmshtmltoolshtmlwidgetsipredisobanditeratorsjquerylibjsonlitekerasKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngprettyGraphsprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrR6randomForestrappdirsRColorBrewerRcppRcppTOMLreadrrecipesreshape2reticulaterglrlangrmarkdownrpartrprojrootrstudioapiRtsnesassscalesshapeSNFtoolSQUAREMstringistringrsurvivaltensorflowtfautographtfrunstibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitevroomwhiskerwithrxfunxgboostyamlzeallot

MBMethPred introduction

Rendered fromMBMethPred_introduction.Rmdusingknitr::knitron Nov 21 2024.

Last update: 2023-07-12
Started: 2022-12-10

Readme and manuals

Help Manual

Help pageTopics
Box plotBoxPlot
Confusion matrixConfusionMatrix
Training dataData1 dataset1
Data2Data2 dataset2
Data3Data3 dataset3
K nearest neighbor modelKNearestNeighborModel
Linear discriminant analysis modelLinearDiscriminantAnalysisModel
Model metricsModelMetrics
Naive bayes modelNaiveBayesModel
Artificial neural network modelNeuralNetworkModel
New data prediction resultNewDataPredictionResult
Random forest modelRandomForestModel
Input file for predictionReadMethylFile
Input file for similarity network fusion (SNF)ReadSNFData
RLabelsRLabels Subgroups
Similarity network fusion (SNF)SimilarityNetworkFusion
Support vector machine modelSupportVectorMachineModel
t-SNE 3D plotTSNEPlot
XGBoost modelXGBoostModel